Nitric oxide is the primary mediator of cytotoxicity induced by GSH depletion in neuronal cells.
نویسندگان
چکیده
Glutathione (GSH) levels progressively decline during aging and in neurodegenerative disorders. However, the contribution of such event in mediating neuronal cell death is still uncertain. In this report, we show that, in neuroblastoma cells as well as in primary mouse cortical neurons, GSH decrease, induced by buthionine sulfoximine (BSO), causes protein nitration, S-nitrosylation and DNA strand breaks. Such alterations are also associated with inhibition of cytochrome c oxidase activity and microtubule network disassembly, which are considered hallmarks of nitric oxide (NO) toxicity. In neuroblastoma cells, BSO treatment also induces cell proliferation arrest through the ERK1/2-p53 pathway that finally results in caspase-independent apoptosis, as evident from the translocation of apoptosis-inducing factor from mitochondria towards nuclei. A deeper analysis of the signaling processes indicates that the NO-cGMP pathway is involved in cell proliferation arrest and death. In fact, these events are completely reversed by L-NAME, a specific NO synthase inhibitor, indicating that NO, rather than the depletion of GSH per se, is the primary mediator of cell damage. In addition, the guanylate cyclase (GC) inhibitor LY83583 is able to completely block activation of ERK1/2 and counteract BSO toxicity. In cortical neurons, NMDA (N-methyl-D-aspartic acid) treatment results in GSH decrease and BSO-mediated NO cytotoxicity is enhanced by either epidermal growth factor (EGF) or NMDA. These findings support the idea that GSH might represent the most important buffer of NO toxicity in neuronal cells, and indicate that the disruption of cellular redox buffering controlled by GSH makes neuronal cells susceptible to endogenous physiological flux of NO.
منابع مشابه
Metabolism and Cytotoxic Mechanisms of Nitroglycerin in Isolated Rat Hepatocytes
It has been proposed that organic nitrates such as glyceryl trinitrate (GTN), used in the treatment of cardiovascular diseases, act by producing nitric oxide (NO). However, the biochemical pathway for NO formation from GTN is not well understood. In the present study, we showed that nitrate formation from GTN, by isolated rat hepatocytes, was inhibited about 50% when cellular glutathione w...
متن کاملNitric Oxide Functions; an Emphasis on its Diversity in Infectious Diseases
Nitric oxide is a short-lived mediator, which can be induced in a variety of cell types and produces many physiologic and metabolic changes in target cells. It is important in many biological functions and generated from L-arginine by the enzyme nitric oxide synthase. Nitric oxide conveys a variety of messages between cells, including signals for vasorelaxation, neurotransmission and cytotoxici...
متن کاملRecognition of Betaine as an Inhibitor of Lipopolysaccharide-Induced Nitric Oxide Production in Activated Microglial Cells
Background: Neuroinflammation, as a major outcome of microglia activation, is an important factor for progression of neurodegenerative disorders including Alzheimer's disease and Parkinson's disease. Microglial cells, as the first-line defense in the central nervous system, act as a source of neurotoxic factors such as nitric oxide (NO), a free radical which is involved in neuronal cell death. ...
متن کاملInvolvement of Cytochrome P-450 in n-Butyl Nitrite-Induced Hepatocyte Cytotoxicity
Addition of n-butyl nitrite to isolated rat hepatocytes caused an immediate glutathione depletion followed by an inhibition of mitochondrial respiration, inhi- bition of glycolysis and ATP depletion. At cytotoxic butyl nitrite concentrations, lipid peroxidation occurred before the plasma membrane was disrupted. Cytochrome P-450 inhibitors inhibited peroxynitrite formation and prev...
متن کاملGymnemasylvestre derived compounds inhibit GSH depletion and increase cGMP and nitric oxide to attenuate advanced glycation end products induced hypertrophic growth in renal tubular epithelial cells
The accumulation of advanced glycation end products (AGE) plays significant role in developing tubular hypertrophy during diabetic nephropathy (DN). Reactive oxygen species and nitric oxide (NO) are directly involved in the progression of DN. We have studied the effect of standardized Gymnemasylvestre organic extract (GE) on AGE induced cellular hypertrophy using rat renal tubular epithelial ce...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of cell science
دوره 124 Pt 7 شماره
صفحات -
تاریخ انتشار 2011